
Public

SMART CONTRACT AUDIT REPORT

for

LogX

Prepared By: Xiaomi Huang

PeckShield
November 21, 2023

1/31 PeckShield Audit Report #: 2023-263

contact@peckshield.com

Public

Document Properties

Client LogX
Title Smart Contract Audit Report
Target LogX
Version 1.0
Author Xuxian Jiang
Auditors Colin Zhong, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 November 21, 2023 Xuxian Jiang Final Release
1.0-rc November 15, 2023 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/31 PeckShield Audit Report #: 2023-263

Public

Contents

1 Introduction 4
1.1 About LogX . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Public Exposure of Privileged Functions . 11
3.2 Incorrect TP/SL Order Creation/Update in OrderManager 12
3.3 Improper MaxTP Increase Position Creation in OrderManager 14
3.4 Improper Increase Position Cancellation in OrderManager 15
3.5 Improper Increase Position Execution Logic in OrderManager 16
3.6 Improper Pool Amount Accounting in Vault . 18
3.7 Improper Position Increase Validation in Utils . 19
3.8 Revisited Position Decrease Logic in Vault . 20
3.9 Revisited Position Liquidation Validation Logic in Utils 21
3.10 Inconsistent Vault Token Config Update Logic in TimeLock 23
3.11 Accommodation of Non-ERC20-Compliant Tokens 25
3.12 LLP CooldownDuration Bypass in Liquidity Removal 26
3.13 Trust Issue of Admin Keys . 28

4 Conclusion 30

References 31

3/31 PeckShield Audit Report #: 2023-263

Public

1 | Introduction

Given the opportunity to review the design document and related source code of the LogX protocol,
we outline in the report our systematic approach to evaluate potential security issues in the smart
contract implementation, expose possible semantic inconsistencies between smart contract code and
design document, and provide additional suggestions or recommendations for improvement. Our
results show that the given version of smart contracts can be further improved related to either
security or performance. This document outlines our audit results.

1.1 About LogX

LogX is a decentralised exchange for trading perpetuals. It is designed to provide lightning fast
execution at very low fees and zero price impact. The trading is supported by the LogX pool which
contains stable coins. Liquidity providers earn based on the performance of the pool and fees collected
from trading. The price feeds are supported by dark oracle, which fetches prices from Pyth oracles
and other centralized exchanges to provide better aggregated prices. The aggregation is done to
provide additional safety for liquidity providers. The basic information of the audited protocol is as
follows:

Table 1.1: Basic Information of The LogX

Item Description
Name LogX
Type EVM Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report November 21, 2023

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

• https://github.com/eugenix-io/logX-LP.git (831b10e)

4/31 PeckShield Audit Report #: 2023-263

Public

And here is the commit ID after fixes for the issues found in the audit have been checked in:

• https://github.com/eugenix-io/logX-LP.git (2b4c1c5)

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [8]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the

5/31 PeckShield Audit Report #: 2023-263

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/31 PeckShield Audit Report #: 2023-263

Public

contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/31 PeckShield Audit Report #: 2023-263

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/31 PeckShield Audit Report #: 2023-263

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the LogX protocol. During
the first phase of our audit, we study the smart contract source code and run our in-house static
code analyzer through the codebase. The purpose here is to statically identify known coding bugs,
and then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 3

Medium 4

Low 6

Informational 0

Total 13

We have so far identified a list of potential issues. For each uncovered issue, we have therefore
developed test cases for reasoning, reproduction, and/or verification. After further analysis and
internal discussion, we determined a few issues of varying severities that need to be brought up and
paid more attention to, which are categorized in the above table. More information can be found in
the next subsection, and the detailed discussions of each of them are in Section 3.

9/31 PeckShield Audit Report #: 2023-263

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 3 high-severity vulnerabil-
ities, 4 medium-severity vulnerabilities, and 6 low-severity vulnerabilities.

Table 2.1: Key LogX Audit Findings

ID Severity Title Category Status
PVE-001 High Public Exposure of Privileged Func-

tions
Security Feature Resolved

PVE-002 High Incorrect TP/SL Order Creation/Up-
date in OrderManager

Business Logic Resolved

PVE-003 Medium Improper MaxTP Increase Position
Creation in OrderManager

Business Logic Resolved

PVE-004 High Improper Increase Position Cancella-
tion in OrderManager

Business Logic Resolved

PVE-005 Medium Improper Increase Position Execution
Logic in OrderManager

Business Logic Resolved

PVE-006 Medium Improper Pool Amount Accounting in
Vault

Business Logic Resolved

PVE-007 Low Improper Position Increase Validation
in Utils

Business Logic Resolved

PVE-008 Low Revisited Position Decrease Logic in
Vault

Business Logic Resolved

PVE-009 Low Revisited Position Liquidation Valida-
tion Logic in Utils

Business Logic Resolved

PVE-010 Low Inconsistent Vault Token Config Up-
date Logic in TimeLock

Coding Practices Resolved

PVE-011 Low Accommodation of Non-ERC20-
Compliant Tokens

Coding Practices Resolved

PVE-012 Low LLP CooldownDuration Bypass in Liq-
uidity Removal

Business Logic Resolved

PVE-013 Medium Trust Issue of Admin Keys Security Features Mitigated

All findings have been resolved in latest commit of 2b4c1c5 by LogX. Besides recommending
specific countermeasures to mitigate these issues, we also emphasize that it is always important
to develop necessary risk-control mechanisms and make contingency plans, which may need to be
exercised before the mainnet deployment. The risk-control mechanisms need to kick in at the very
moment when the contracts are being deployed in mainnet. Please refer to Section 3 for details.

10/31 PeckShield Audit Report #: 2023-263

Public

3 | Detailed Results

3.1 Public Exposure of Privileged Functions

• ID: PVE-001

• Severity: High

• Likelihood: High

• Impact: High

• Target: Multiple Contracts

• Category: Security Features [4]

• CWE subcategory: CWE-287 [2]

Description

The audited LogX protocol is a unique decentralized derivative exchange. To facilitate the trading
and position management, the protocol has a number of privileged functions. While examining these
privileged functions, we notice some of them are publicly exposed without caller verification.

In the following, we show an example privileged routine from the PriceFeed contract. This routine
is designed to configure the latest asset price. However, this routine is public and its public exposure
without any caller authentication will corrupt the protocol integrity or cripple the entire protocol
functionality.

119 function _setPrice(address _tokenAddress , PriceArgs memory _darkOraclePrice) public
{

120 validateData(_darkOraclePrice.publishTime);
121 TokenPrice memory priceObject = TokenPrice(_darkOraclePrice.price ,

_darkOraclePrice.price , _darkOraclePrice.expo , _darkOraclePrice.expo ,
_darkOraclePrice.publishTime);

122 tokenToPrice[_tokenAddress] = priceObject;
123 emit PriceSet(priceObject);
124 }
125 ...
126 function compareAndSetPrice(address _tokenAddress ,
127 PythStructs.Price memory _pythPrice , PriceArgs memory _darkOraclePrice) public {
128 uint256 pythPrice = getFinalPrice(uint64(_pythPrice.price), _pythPrice.expo);
129 uint256 darkOraclePrice = getFinalPrice(uint64(_darkOraclePrice.price),

_darkOraclePrice.expo);
130

11/31 PeckShield Audit Report #: 2023-263

Public

131 if (allowedDelta(pythPrice , darkOraclePrice)) {
132 _setPrice(_tokenAddress , _darkOraclePrice);
133 } else {
134 validateData(_pythPrice.publishTime);
135 TokenPrice memory priceObject = TokenPrice(
136 pythPrice > darkOraclePrice
137 ? uint64(_pythPrice.price)
138 : _darkOraclePrice.price ,
139 pythPrice < darkOraclePrice
140 ? uint64(_pythPrice.price)
141 : _darkOraclePrice.price ,
142 pythPrice > darkOraclePrice
143 ? _pythPrice.expo
144 : _darkOraclePrice.expo ,
145 pythPrice < darkOraclePrice
146 ? _pythPrice.expo
147 : _darkOraclePrice.expo ,
148 _darkOraclePrice.publishTime
149);
150 tokenToPrice[_tokenAddress] = priceObject;
151 emit PriceSet(priceObject);
152 }
153 }

Listing 3.1: PriceFeed::updatePrice()/compareAndSetPrice()

Recommendation Revisit all public functions and add necessary caller verification. Note this
issue affects a few public functions, including RewardTracker::setRewardPrecision().

Status This issue has been fixed by the following commit: e0cc24c.

3.2 Incorrect TP/SL Order Creation/Update in OrderManager

• ID: PVE-002

• Severity: High

• Likelihood: High

• Impact: High

• Target: OrderManager

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [3]

Description

To facilitate the order management, the LogX protocol has a built-in OrderManager contract. In the
process of analyzing the order creation logic, we notice the current implementation has an improper
way to create and update orders.

In the following, we show the code snippet of the related createOrders() routine. This routine
has a number of arguments and is defined to allow the user to create new orders. However, it

12/31 PeckShield Audit Report #: 2023-263

https://github.com/eugenix-io/logX-LP/pull/78/commits/e0cc24c

Public

comes to our attention that the new limit order has been specified with a user-controlled argument
_isIncreaseOrder (line 971), which should be a constant true. Similarly, the associated TP/SL orders
should have its _isIncreaseOrder with a constant false, not modified by the user either. In addition,
the same TP/SL orders should also have 0 as its _collateralDelta argument.

964 if(limitPrice != 0){
965 uint256 currMarketPrice = _isLong? IPriceFeed(pricefeed).

getMaxPriceOfToken(_indexToken):IPriceFeed(pricefeed).
getMinPriceOfToken(_indexToken);

966 _validateLimitOrderPrices(currMarketPrice , _isLong , _limitPrice);
967
968 IERC20(_collateralToken).transferFrom(msg.sender , address(this),

_collateralDelta);
969 uint256 _collateralAmountUsd = IUtils(utils).tokenToUsdMin(

_collateralToken , _collateralDelta);
970 require(_collateralAmountUsd >= minPurchaseTokenAmountUsd , "

OrderManager: too less collateral");
971 _createOrder(msg.sender , _collateralDelta , _collateralToken ,

_indexToken , _sizeDelta , _isLong , _limitPrice , !_isLong ,
minExecutionFeeLimitOrder , _isIncreaseOrder , _maxOrder);

972 }else{
973 // tpsl order or limit order when closing position
974 uint256 currMarketPrice = !_isLong? IPriceFeed(pricefeed).

getMaxPriceOfToken(_indexToken):IPriceFeed(pricefeed).
getMinPriceOfToken(_indexToken);

975 _validateTPSLOrderPrices(currMarketPrice , _isLong , _tpPrice , _slPrice);
976 if(tpPrice != 0){
977 _createOrder(msg.sender , _collateralDelta , _collateralToken ,

_indexToken , _sizeDelta , _isLong , _tpPrice , _isLong ,
minExecutionFeeLimitOrder , _isIncreaseOrder , _maxOrder);

978 }
979 if(slPrice !=0){
980 _createOrder(msg.sender , _collateralDelta , _collateralToken ,

_indexToken , _sizeDelta , _isLong , _slPrice , !_isLong ,
minExecutionFeeLimitOrder , _isIncreaseOrder , _maxOrder);

981 }
982 }

Listing 3.2: OrderManager::createOrders()

Moreover, the create order may be updated via a routine updateOrder(), which should be enhanced
with the proper validation on the given _triggerPrice and _triggerAboveThreshold. We also notice
the order update routine should not update the order’s _collateralDelta without properly transferring
in or out respective collateral.

Recommendation Revise the above routine to properly manage user orders.

Status This issue has been fixed by the following commits: 1863de3. and 3ee32fc.

13/31 PeckShield Audit Report #: 2023-263

https://github.com/eugenix-io/logX-LP/pull/78/commits/1863de3
https://github.com/eugenix-io/logX-LP/pull/78/commits/3ee32fc

Public

3.3 Improper MaxTP Increase Position Creation in
OrderManager

• ID: PVE-003

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: OrderManager/Utils

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [3]

Description

As mentioned earlier, the LogX protocol has a built-in OrderManager contract to manager user orders.
While reviewing the order creation process, we notice the current implementation has attached a
maxTP order to limit possible max profit. However, the current approach to compute associated
take-profit price should be improved.

In the following, we show the code snippet of the related getTPPrice() routine. This routine
is used to compute the take-profit price to meet the maxProfitMultiplier requirement. How-
ever, it comes to our attention that profitDelta should be computed as (_maxTPAmount * markPrice

* getMinPrice(collateralToken))/(sizeDelta * 10**vault.tokenDecimals(collateralToken)), not cur-
rent (_maxTPAmount * markPrice * 10**(30 - vault.tokenDecimals(collateralToken)))/sizeDelta (line
828).

824 function getTPPrice(uint256 sizeDelta , bool isLong , uint256 markPrice ,
825 uint256 _maxTPAmount , address collateralToken)
826 view public returns(uint256)
827 {
828 uint256 profitDelta = (_maxTPAmount * markPrice * 10**(30 - vault.tokenDecimals(

collateralToken)))/sizeDelta;
829
830 if(isLong){
831 return markPrice + profitDelta;
832 }
833
834 return markPrice - profitDelta;
835 }

Listing 3.3: Utils::getTPPrice()

Moreover, the maxTP order should be instantiated with the parameter _isLong, not using the
hardcoded true (line 354).

Recommendation Revise the above routine to properly manage the attached maxTP order.

Status This issue has been fixed by the following commit: 63977b0.

14/31 PeckShield Audit Report #: 2023-263

https://github.com/eugenix-io/logX-LP/pull/78/commits/63977b0

Public

3.4 Improper Increase Position Cancellation in OrderManager

• ID: PVE-004

• Severity: High

• Likelihood: High

• Impact: High

• Target: OrderManager

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [3]

Description

The new increase order creation may come with the creation of associated new TP/SL/maxTP orders.
In the process of analyzing their execution fee, we notice the current fee collection logic may expose
a vulnerability to drain funds in OrderManager.

In the following, we show the implementation of the createIncreasePosition() routine. This
routine is designed to create an increase position order. Based on the given arguments, it will also
create a maxTP order as well as possibly two other TP/SL orders. We notice both TP/SL orders may
be collected with the so-called minExecutionFeeLimitOrder fee while the creation of maxTP order is
mandatory, but without the minExecutionFeeLimitOrder fee. However, its cancellation may always
refund the order creator with the minExecutionFeeLimitOrder fee.

348 {
349 uint256 collateralAmount = _amountIn;
350 bool isLong = _isLong;
351 address collateralToken = _collateralToken;
352 address indexToken = _indexToken;
353 uint256 sizeDelta = _sizeDelta;
354 tpPrice = IUtils(utils).getTPPrice(_sizeDelta , true , _acceptablePrice ,

collateralAmount * maxProfitMultiplier , collateralToken);
355 _createOrder(msg.sender , 0, collateralToken , indexToken , sizeDelta , isLong ,

tpPrice , isLong , minExecutionFeeLimitOrder , false , true);
356 return positionKey;
357 }

Listing 3.4: OrderManager::createIncreasePosition()

1099 function _cancelOrder(bytes32 orderKey , uint256 _orderIndex , Order memory order)
internal {

1100 require(order.account != address (0), "OrderManager: non -existent order");
1101
1102 delete orders[orderKey];
1103 EnumerableSet.remove(orderKeys , orderKey);
1104 if(order.isIncreaseOrder){
1105 IERC20(order.collateralToken).transfer(order.account , order.collateralDelta)

;
1106 }
1107 (bool success ,) = (order.account).call{value: order.executionFee }("");

15/31 PeckShield Audit Report #: 2023-263

Public

1108 require(success , "OrderManager: Exectuion Fee transfer failed");
1109 ...
1110 }

Listing 3.5: OrderManager::_cancelOrder()

Moreover, we may need to revisit the order cancellation logic to cancel the associated TP/SL/maxTP

orders if the base increase position order is cancelled.

Recommendation Revise the above routine to properly refund user fee only if the fee is
collected.

Status This issue has been fixed by the following commit: a325e0d.

3.5 Improper Increase Position Execution Logic in
OrderManager

• ID: PVE-005

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: OrderManager

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [3]

Description

The created increase order requests may be executed by authorized entities, i.e., onlyPositionKeeper.
In the process of reviewing the execution of these increase position requests, we notice the current
execution logic should be improved.

In the following, we show the implementation of the affected executeIncreasePositions() routine.
As the name indicates, this routine is designed to batch-execute the created increase position requests.
It has a rather straightforward logic in iterating each request for the attempted execution. If the
execution is not successful, it aims to cancel the request. If the cancel also fails, the current logic
simply deletes the request from the recorded increasePositionRequestKeys array. We argue that the
request deletion upon the cancellation failure is not appropriate as it still does not refund the user
funds!

444 function executeIncreasePositions(
445 uint256 _endIndex ,
446 address payable _executionFeeReceiver
447) external override onlyPositionKeeper {
448 uint256 index = increasePositionRequestKeysStart;
449 uint256 length = increasePositionRequestKeys.length;
450

16/31 PeckShield Audit Report #: 2023-263

https://github.com/eugenix-io/logX-LP/pull/78/commits/a325e0d

Public

451 if (index >= length) {
452 return;
453 }
454
455 if (_endIndex > length) {
456 _endIndex = length;
457 }
458
459 while (index < _endIndex) {
460 bytes32 key = increasePositionRequestKeys[index];
461
462 // if the request was executed then delete the key from the array
463 // if the request was not executed then break from the loop , this can happen

if the
464 // minimum number of blocks has not yet passed
465 // an error could be thrown if the request is too old or if the slippage is
466 // higher than what the user specified , or if there is insufficient

liquidity for the position
467 // in case an error was thrown , cancel the request
468 try
469 this.executeIncreasePosition(key , _executionFeeReceiver)
470 returns (bool _wasExecuted) {
471 if (! _wasExecuted) {
472 break;
473 }
474 } catch {
475 // wrap this call in a try catch to prevent invalid cancels from

blocking the loop
476 try
477 this.cancelIncreasePosition(key , _executionFeeReceiver)
478 returns (bool _wasCancelled) {
479 if (! _wasCancelled) {
480 break;
481 }
482 } catch {}
483 }
484
485 delete increasePositionRequestKeys[index];
486 index ++;
487 }
488
489 increasePositionRequestKeysStart = index;
490 }

Listing 3.6: OrderManager::executeIncreasePositions()

Recommendation Revise the above routine to properly refund user funds when the request
cancellation also fails.

Status This issue has been fixed by the following commit: 7b1d241.

17/31 PeckShield Audit Report #: 2023-263

https://github.com/eugenix-io/logX-LP/pull/78/commits/7b1d241

Public

3.6 Improper Pool Amount Accounting in Vault

• ID: PVE-006

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Vault

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [3]

Description

LogX is a decentralised exchange for trading perpetuals with its core trading logic in the Vault contract.
This Vault contract has the key accounting poolAmounts state to keep track of pool funds for LLP

pricing. While analyzing various activities that may affect the pool amount, we notice an issue in the
position liquidation functionality that does not properly update the pool amount.

In the following, we show the code snippet from the liquidatePosition() routine. This routine
itself is designed to liquidate an underwater position. We notice the pool amount adjustment differs
on the computed marginFees. If marginFees<0, the liquidated position may have positive funding
rate and the pool amount should be increased by both abs(marginFees) and the position collateral.
Similarly, if marginFees>0, we need to either reward pool by adding position.collateral - uint(

marginFees), or decrease pool amount by subtracting uint(marginFees)- position.collateral. The
current adjustment only considers the pool-rewarding branch, not the pool-deduction branch.

729 if(marginFees <0){
730 _increasePoolAmount(position.collateralToken , utils.usdToTokenMin(position.

collateralToken , uint(abs(marginFees))));
731 } else {
732 if (uint(marginFees) < position.collateral) {
733 uint256 remainingCollateral = position.collateral - uint(marginFees);
734 _increasePoolAmount(
735 position.collateralToken ,
736 utils.usdToTokenMin(position.collateralToken , remainingCollateral)
737);
738 }
739 }

Listing 3.7: Vault::createIncreasePosition()

Recommendation Revise the above routine to properly adjust the pool amount when a position
is liquidated.

Status This issue has been fixed by the following commit: 32bdf1f.

18/31 PeckShield Audit Report #: 2023-263

https://github.com/eugenix-io/logX-LP/pull/78/commits/32bdf1f

Public

3.7 Improper Position Increase Validation in Utils

• ID: PVE-007

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Utils

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [3]

Description

DeFi protocols typically have a number of system-wide parameters that can be dynamically configured
on demand. The LogX protocol is no exception. Specifically, if we examine the Vault contract, it has
defined a number of protocol-wide risk parameters, such as maxOIImbalance and maxLiquidityPerUser

. Our analysis shows that the maxLiquidityPerUser enforcement has an issue in the total liquidity
calculation.

In the following, we show the implementation of the related validateIncreasePosition() routine.
As the name indicates, this routine is designed to validate the increase position order. We notice
the availableLiquidityInUsd state computes the available liquidity. However, its calculation does not
take into account the token’s decimals when adding each supported token vault.poolAmounts(token)

* price (line 84). As a result, it greatly affects the final validation of maxLiquidityPerUser.

61 function validateIncreasePosition(
62 address _account ,
63 address _collateralToken ,
64 address _indexToken ,
65 uint256 _sizeDelta ,
66 bool _isLong
67) external view override {
68
69 if(! isValidate){
70 return;
71 }
72
73 Position memory prevPosition = getPosition(_account , _collateralToken ,

_indexToken , _isLong);
74 uint256 sizeAfterUpdate = _sizeDelta + prevPosition.size;
75 uint256 length = vault.allWhitelistedTokensLength ();
76 uint256 availableLiquidityInUsd = 0;
77
78 for (uint256 i = 0; i < length; i++) {
79 address token = vault.allWhitelistedTokens(i);
80 if(! vault.canBeCollateralToken(token)){ // instead of whitelistedToken we

should check for canBeCollateralToken true false?
81 continue;
82 }
83 uint256 price = getMinPrice(token);

19/31 PeckShield Audit Report #: 2023-263

Public

84 availableLiquidityInUsd += vault.poolAmounts(token) * price;
85 }
86 require(sizeAfterUpdate *100/(availableLiquidityInUsd) < vault.

maxLiquidityPerUser(_indexToken), "Utils: Huge liquidity captured for single
user");

87 }

Listing 3.8: Utils::validateIncreasePosition()

Recommendation Revise the above routine to properly compute the available liquidity and
enforce the maxLiquidityPerUser requirement.

Status This issue has been fixed by the following commit: 0064a31.

3.8 Revisited Position Decrease Logic in Vault

• ID: PVE-008

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Vault

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [3]

Description

As mentioned earlier, Vault manages active trade positions in LogX. In the process of reviewing the
execution of a decrease position orders, we notice the current execution logic should be improved.

In the following, we show the code snippet from the affected _decreasePosition() routine. Within
this routine, there is a need to properly return back to the user once its position is decreased with
realized profit and loss. The return fund amount is saved in the usdOutAfterFee state. However, its
transfer depends on the usdOut state (line 1114). Our analysis indicates that it is possible to have
positive usdOutAfterFee while usdOut remains as 0.

1106 (uint256 usdOut , uint256 usdOutAfterFee , int256 signedDelta) = _reduceCollateral
(

1107 _account ,
1108 _collateralToken ,
1109 _indexToken ,
1110 0,
1111 _sizeDelta ,
1112 _isLong
1113);
1114 if (usdOut > 0) {
1115 amountOutAfterFees = utils.usdToTokenMin(
1116 _collateralToken ,
1117 usdOutAfterFee

20/31 PeckShield Audit Report #: 2023-263

https://github.com/eugenix-io/logX-LP/pull/78/commits/0064a31

Public

1118);
1119 _transferOut(_collateralToken , amountOutAfterFees , _receiver);
1120 }

Listing 3.9: Vault::_decreasePosition()

Recommendation Revise the above routine to properly return user funds when the position is
decreased.

Status This issue has been fixed by the following commit: 04eac8c.

3.9 Revisited Position Liquidation Validation Logic in Utils

• ID: PVE-009

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Utils

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [3]

Description

In Section 3.7, we have examined the logic to validate the increase position order. In this section, we
analyze the validation logic related to the position liquidation and report an issue that may wrongfully
liquidate a profitable position that could have small collateral, but with high margin fee.

In the following, we show the code snippet from the related validateLiquidation() routine. This
routine is designed to validate whether the position can be liquidated or not. We notice it mainly
compares the position collateral with margin fee that will be collected, including borrowing fee,
position fee, funding fee as well as possible liquidation fee. It comes to our attention that it does
not credit the position with the profit when comparing with margin fee. As a result, a profitable
position that may have small collateral, but with high margin fee is considered as liquidatable.

160 int256 marginFees = int(getBorrowingFee(
161 _account ,
162 _collateralToken ,
163 _indexToken ,
164 _isLong ,
165 position.size ,
166 position.entryBorrowingRate
167));
168 marginFees =
169 marginFees +
170 int(
171 getPositionFee(
172 _account ,

21/31 PeckShield Audit Report #: 2023-263

https://github.com/eugenix-io/logX-LP/pull/78/commits/04eac8c

Public

173 _collateralToken ,
174 _indexToken ,
175 _isLong ,
176 position.size
177)
178);
179
180 marginFees = marginFees + getFundingFee(_account , _collateralToken , _indexToken ,

_isLong , position.size , position.entryFundingRate);
181 if (! hasProfit && position.collateral < delta) {
182 if (_raise) {
183 revert("Vault: losses exceed collateral");
184 }
185 return (1, marginFees);
186 }
187
188 uint256 remainingCollateral = position.collateral;
189 if (! hasProfit) {
190 remainingCollateral = position.collateral - (delta);
191 }
192
193 if(marginFees <0){
194 remainingCollateral = remainingCollateral + uint(abs(marginFees));
195 } else {
196 if (remainingCollateral < uint(marginFees)) {
197 if (_raise) {
198 revert("Vault: fees exceed collateral");
199 }
200 // cap the fees to the remainingCollateral
201 return (1, int(remainingCollateral));
202 }
203 remainingCollateral = remainingCollateral - uint(marginFees);
204 }

Listing 3.10: Utils::validateLiquidation()

Recommendation Revise the above routine to properly validate whether is position can be
liquidated or not.

Status This issue has been fixed by the following commit: ffb5d3d.

22/31 PeckShield Audit Report #: 2023-263

https://github.com/eugenix-io/logX-LP/pull/78/commits/ffb5d3d

Public

3.10 Inconsistent Vault Token Config Update Logic in
TimeLock

• ID: PVE-010

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: TimeLock

• Category: Coding Practices [5]

• CWE subcategory: CWE-1126 [1]

Description

To standardize the configuration of protocol-wide parameters, LogX has a built-in TimeLock contract
to apply a time delay in the activation of new risk parameters. While reviewing their activation, we
notice a specific update should be revisited.

In the following, we show the implementation of the related signalVaultSetTokenConfig() and
vaultSetTokenConfig() routines. Specifically, the former routine indicates the need to update the
vault token configuration while the latter makes the change effective after a certain time de-
lay is passed. However, we notice the former computes the configuration hash by including the
_canBeCollateralToken and _canBeIndexToken arguments while the latter does not include these two.
As a result, it is unlikely for the two routines to compute the same hash values, which makes the
intended update of vault token configuration non-functional.

326 function signalVaultSetTokenConfig(
327 address _vault ,
328 address _token ,
329 uint256 _tokenDecimals ,
330 uint256 _tokenWeight ,
331 uint256 _minProfitBps ,
332 uint256 _maxUsdlAmount ,
333 bool _isStable ,
334 bool _canBeCollateralToken ,
335 bool _canBeIndexToken
336) external onlyAdmin {
337 bytes32 action = keccak256(abi.encodePacked(
338 "vaultSetTokenConfig",
339 _vault ,
340 _token ,
341 _tokenDecimals ,
342 _tokenWeight ,
343 _minProfitBps ,
344 _maxUsdlAmount ,
345 _isStable ,
346 _canBeCollateralToken ,
347 _canBeIndexToken
348));

23/31 PeckShield Audit Report #: 2023-263

Public

349
350 _setPendingAction(action);
351
352 emit SignalVaultSetTokenConfig(
353 _vault ,
354 _token ,
355 _tokenDecimals ,
356 _tokenWeight ,
357 _minProfitBps ,
358 _maxUsdlAmount ,
359 _isStable ,
360 _canBeCollateralToken ,
361 _canBeIndexToken
362);
363 }
364
365 function vaultSetTokenConfig(
366 address _vault ,
367 address _token ,
368 uint256 _tokenDecimals ,
369 uint256 _tokenWeight ,
370 uint256 _minProfitBps ,
371 uint256 _maxUsdlAmount ,
372 bool _isStable ,
373 bool canBeCollateralToken ,
374 bool canBeIndexToken ,
375 uint _maxLeverage ,
376 uint256 _maxLiquidityPerUser ,
377 uint256 _maxOiImbalance
378) external onlyAdmin {
379 bytes32 action = keccak256(abi.encodePacked(
380 "vaultSetTokenConfig",
381 _vault ,
382 _token ,
383 _tokenDecimals ,
384 _tokenWeight ,
385 _minProfitBps ,
386 _maxUsdlAmount ,
387 _isStable
388));
389
390 _validateAction(action);
391 _clearAction(action);
392
393 IVault(_vault).setTokenConfig(
394 _token ,
395 _tokenDecimals ,
396 _minProfitBps ,
397 _isStable ,
398 canBeCollateralToken ,
399 canBeIndexToken ,
400 _maxLeverage ,

24/31 PeckShield Audit Report #: 2023-263

Public

401 _maxLiquidityPerUser ,
402 _maxOiImbalance
403);
404 }

Listing 3.11: TimeLock::signalVaultSetTokenConfig()/vaultSetTokenConfig()

Recommendation Revise the above routines to properly compute the token configuration hash
values.

Status This issue has been fixed by the following commit: 256aa22.

3.11 Accommodation of Non-ERC20-Compliant Tokens

• ID: PVE-011

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Coding Practices [5]

• CWE subcategory: CWE-1126 [1]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine
the transfer() routine and possible idiosyncrasies from current widely-used token contracts.

In particular, we use the popular stablecoin, i.e., USDT, as our example. We show the related
code snippet below. Specifically, the transfer() routine does not have a return value defined and
implemented. However, the IERC20 interface has defined the transfer() interface with a bool return
value. As a result, the call to transfer() may expect a return value. With the lack of return value
of USDT’s transfer(), the call will be unfortunately reverted.

126 f unc t i on t r a n s f e r (address _to , u in t _value) pub l i c on l yPay l o adS i z e (2 ∗ 32) {
127 u in t f e e = (_value . mul (b a s i s P o i n t sR a t e)) . d i v (10000) ;
128 i f (f e e > maximumFee) {
129 f e e = maximumFee ;
130 }
131 u in t sendAmount = _value . sub (f e e) ;
132 ba l a n c e s [msg . sender] = ba l a n c e s [msg . sender] . sub (_value) ;
133 ba l a n c e s [_to] = ba l a n c e s [_to] . add (sendAmount) ;
134 i f (f e e > 0) {
135 ba l a n c e s [owner] = ba l a n c e s [owner] . add (f e e) ;
136 Transfer (msg . sender , owner , f e e) ;
137 }
138 Transfer (msg . sender , _to , sendAmount) ;

25/31 PeckShield Audit Report #: 2023-263

https://github.com/eugenix-io/logX-LP/pull/78/commits/256aa22

Public

139 }

Listing 3.12: USDT::transfer()

Because of that, a normal call to transfer() is suggested to use the safe version, i.e., safeTransfer
(), In essence, it is a wrapper around ERC20 operations that may either throw on failure or return
false without reverts. Moreover, the safe version also supports tokens that return no value (and
instead revert or throw on failure). Note that non-reverting calls are assumed to be successful.

In current implementation, if we examine the BaseToken::withdrawToken() routine that is designed
to recover the funds that may be accidentally sent to this contract. To accommodate the specific
idiosyncrasy, there is a need to use safeTransfer(), instead of transfer() (line 65).

63 // to help users who accidentally send their tokens to this contract
64 function withdrawToken(address _token , address _account , uint256 _amount) external

override onlyGov {
65 IERC20(_token).transfer(_account , _amount);
66 }

Listing 3.13: BaseToken::withdrawToken()

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related
approve()/transfer()/transferFrom(). Note other contracts are also affected, including YieldToken,
TimeLock, RewardTracker, RewardRouter, BaseOrderManager, OrderManager, LLPManager, and Vault.

Status This issue has been fixed by the following commit: aea82d8.

3.12 LLP CooldownDuration Bypass in Liquidity Removal

• ID: PVE-012

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: LLPManager

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [3]

Description

The LogX protocol has a LLPManager contract that allows the minting and redemption of LLP, the
platform’s liquidity provider token. We notice there is a cooldown duration after minting LLP. The
cooldown duration represents the time that needs to pass for the user before it can be redeemed.
Our analysis shows that this cooldown enforcement can be bypassed.

To elaborate, we show below the related _removeLiquidity() routine. When the intended liquidity
is requested for removal, this routine will validate the cooldown duration is passed. However, it can

26/31 PeckShield Audit Report #: 2023-263

https://github.com/eugenix-io/logX-LP/pull/78/commits/aea82d8

Public

trivially bypassed by transfering the LLP to another new account and instructing the new account to
perform the liquidity removal – without further being constrained by the cooldown duration.

217 function _removeLiquidity(
218 address _account ,
219 address _tokenOut ,
220 uint256 _llpAmount ,
221 uint256 _minOut ,
222 address _receiver
223) private returns (uint256) {
224 require(_llpAmount > 0, "LlpManager: invalid _llpAmount");
225 require(
226 lastAddedAt[_account] + (cooldownDuration) <= block.timestamp ,
227 "LlpManager: cooldown duration not yet passed"
228);

230 // calculate aum before sellusdl
231 uint256 aumInusdl = utils.getAumInUsdl(false);
232 uint256 llpSupply = IERC20(llp).totalSupply ();

234 uint256 usdlAmount = (_llpAmount * (aumInusdl)) / (llpSupply);
235 uint256 usdlBalance = IERC20(usdl).balanceOf(address(this));
236 if (usdlAmount > usdlBalance) {
237 IUSDL(usdl).mint(address(this), usdlAmount - (usdlBalance));
238 }

240 IMintable(llp).burn(_account , _llpAmount);

242 IERC20(usdl).transfer(address(vault), usdlAmount);
243 uint256 amountOut = vault.sellUSDL(_tokenOut , _receiver);
244 require(amountOut >= _minOut , "LlpManager: insufficient output");

246 emit RemoveLiquidity(
247 _account ,
248 _tokenOut ,
249 _llpAmount ,
250 aumInusdl ,
251 llpSupply ,
252 usdlAmount ,
253 amountOut
254);

256 return amountOut;
257 }

Listing 3.14: LLPManager::_removeLiquidity()

Recommendation Revise the LLP routine to honor the above cooldown duration.

Status This issue has been resolved by turning on the LLP’s private mode, which basically
disables LLP transfers.

27/31 PeckShield Audit Report #: 2023-263

Public

3.13 Trust Issue of Admin Keys

• ID: PVE-013

• Severity: Medium

• Likelihood: Medium

• Impact: High

• Target: Multiple Contracts

• Category: Security Features [4]

• CWE subcategory: CWE-287 [2]

Description

In the LogX protocol, there is a privileged administrative account owner. The administrative account
plays a critical role in governing and regulating the protocol-wide operations. Our analysis shows
that this privileged account needs to be scrutinized. In the following, we use the TimeLock contract
as an example and show the representative functions potentially affected by the privileges of the
administrative account.

113 function setKeeper(address _keeper , bool _isActive) external onlyAdmin {
114 isKeeper[_keeper] = _isActive;
115 }
116
117 function setBuffer(uint256 _buffer) external onlyAdmin {
118 require(_buffer <= MAX_BUFFER , "Timelock: invalid _buffer");
119 require(_buffer > buffer , "Timelock: buffer cannot be decreased");
120 buffer = _buffer;
121 }
122
123 function setMaxLeverage(address _vault , uint256 _maxLeverage , address _token)

external onlyAdmin {
124 require(_maxLeverage > MAX_LEVERAGE_VALIDATION , "Timelock: invalid _maxLeverage");
125 IVault(_vault).setMaxLeverage(_maxLeverage , _token);
126 }
127
128 function setBorrowingRate(address _vault , uint256 _borrowingInterval , uint256

_borrowingRateFactor) external onlyKeeperAndAbove {
129 require(_borrowingRateFactor < MAX_BORROWING_RATE_FACTOR , "Timelock: invalid

_borrowingRateFactor");
130 IVault(_vault).setBorrowingRate(_borrowingInterval , _borrowingRateFactor);
131 }
132
133 function setFundingRate(address _vault , uint256 _fundingInterval , uint256

_fundingRateFactor , uint256 _fundingExponent) external onlyKeeperAndAbove {
134 require(_fundingRateFactor < MAX_FUNDING_RATE_FACTOR , "Timelock: invalid

_fundingRateFactor");
135 IVault(_vault).setFundingRate(_fundingInterval , _fundingRateFactor ,

_fundingExponent);
136 }
137
138 function setTokenConfig(
139 address _vault ,

28/31 PeckShield Audit Report #: 2023-263

Public

140 address _token ,
141 uint256 _minProfitBps ,
142 uint _maxLeverage ,
143 uint256 _maxLiquidityPerUser ,
144 uint256 _maxOiImbalance
145) external onlyKeeperAndAbove {
146 ...
147 }

Listing 3.15: Example Privileged Operations in TimeLock

851 // function is added only for testing purposes to prevent locking of funds.
852 //Main -net will not have this function.
853 function withdrawFunds(address _token , uint256 _amount) external onlyAdmin {
854 uint balance = IERC20(_token).balanceOf(address(this));
855 require(_amount <= balance ,"OrderManager: Requested amount exceeds OrderManager

balance");
856 IERC20(_token).transfer(admin , _amount);
857 }

Listing 3.16: Example Privileged Operations in OrderManager

We understand the need of the privileged functions for contract maintenance, but at the same
time the extra power to the administrative account may also be a counter-party risk to the protocol
users. It would be worrisome if the privileged administrative account is a plain EOA account. Note
that a multi-sig account could greatly alleviate this concern, though it is still far from perfect.
Specifically, a better approach is to eliminate the administration key concern by transferring the role
to a community-governed DAO.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changes to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been mitigated with the plan to transfer the privileged account to a
multi-sig account.

29/31 PeckShield Audit Report #: 2023-263

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the LogX protocol, which is a
decentralised exchange for trading perpetuals. It is designed to provide lightning fast execution at
very low fees and zero price impact. The trading is supported by the LogX pool which contains
stable coins. Liquidity providers earn based on the performance of the pool and fees collected from
trading. The price feeds are supported by dark oracle, which fetches prices from Pyth oracles and
other centralized exchanges to provide better aggregated prices. The aggregation is done to provide
additional safety for liquidity providers. The current code base is well structured and neatly organized.
Those identified issues are promptly confirmed and addressed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

30/31 PeckShield Audit Report #: 2023-263

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.mitre.

org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/data/

definitions/841.html.

[4] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[5] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[6] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[7] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[8] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[9] PeckShield. PeckShield Inc. https://www.peckshield.com.

31/31 PeckShield Audit Report #: 2023-263

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About LogX
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Public Exposure of Privileged Functions
	Incorrect TP/SL Order Creation/Update in OrderManager
	Improper MaxTP Increase Position Creation in OrderManager
	Improper Increase Position Cancellation in OrderManager
	Improper Increase Position Execution Logic in OrderManager
	Improper Pool Amount Accounting in Vault
	Improper Position Increase Validation in Utils
	Revisited Position Decrease Logic in Vault
	Revisited Position Liquidation Validation Logic in Utils
	Inconsistent Vault Token Config Update Logic in TimeLock
	Accommodation of Non-ERC20-Compliant Tokens
	LLP CooldownDuration Bypass in Liquidity Removal
	Trust Issue of Admin Keys

	Conclusion
	References

